Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.

نویسندگان

  • C A Pratt
  • J A Buford
  • J L Smith
چکیده

1. In this, the fifth article in a series to assess changes in posture, hindlimb dynamics, and muscle synergies associated with backward (BWD) quadrupedal walking, we compared the recruitment of three biarticular muscles of the cat's anterior thigh (anterior sartorius, SAa; medial sartorius, SAm; rectus femoris, RF) for forward (FWD) and BWD treadmill walking. Electromyography (EMG) records from these muscles, along with those of two muscles (semitendinosus, ST; anterior biceps femoris, ABF) studied previously in this series, were synchronized with kinematic data digitized from high-speed ciné film for unperturbed steps and steps in which a stumbling corrective reaction was elicited during swing. 2. During swing, the relative timing of EMG activity for the unifunctional SAm (hip and knee flexor) was similar for unperturbed steps of FWD and BWD walking. The SAm was active before paw lift off and remained active during most of swing (75%) for both forms of walking, but there was a marked decrease in EMG amplitude after paw off during BWD and not FWD swing. In contrast, the relative timing of EMG activity for the SAa and RF, two bifunctional muscles (hip flexors, knee extensors), was different for FWD and BWD swing. During FWD swing, the SAa and the RF (to a lesser extent) were coactive with the SAm; however, during BWD swing, the SAa and RF were active just before paw lift off and then inactive for the rest of swing until just before paw contact (see 3). Thus the swing-phase activity of the SAa and RF was markedly shorter for BWD than FWD swing. 3. Activity in SAa and RF was also different during FWD and BWD stance. The RF was consistently active from mid-to-late stance of FWD walking, and the SAa was also active during this period in some FWD steps. During the stance phase of BWD walking, however, the onset of activity in both muscles consistently shifted to early stance as both muscles became active just before paw contact (the E1 phase). Activity in RF consistently persisted through most of BWD stance. The duration of SAa recruitment during BWD stance was more variable across cats with offsets ranging from mid- to late stance. 4. The activation patterns of the biarticular anterior thigh muscles during stumbling corrective reactions were, in general, similar to their different activations during FWD and BWD swing. The initial response to a mechanical stimulus applied to the dorsum of the paw that obstructed FWD swing was an augmentation of knee flexion and increased activity in ST and SAm. A mechanical stimulus applied to the ventral surface of the paw to obstruct BWD swing resulted in an initial conversion of hip extension to flexion and a slowing of knee flexion. There was a corresponding recruitment of SAa and RF and an enhancement of background activity in SAm. 5. The two forms of walking are differentiated by posture and limb dynamics, yet muscles participating in the basic flexor and extensor synergies are unchanged. Although central pattern generating (CPG) circuits determine the basic timing of these synergies, changes in the duration and waveform of muscle activity may depend on unique interactions among the CPG, supraspinal inputs that set posture and the animal's goal (to walk BWD or FWD) and motion-related feedback from the hindlimb. Output mutability to each muscle may depend on the balance of this tripartite input; muscles with immutable patterns may rely heavily on input from CPG circuits, whereas muscles with mutable patterns may rely more on form-specific proprioceptive and supraspinal inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locomotion in Parkinson's disease: neuronal coupling of upper and lower limbs.

Quadrupedal limb coordination during human walking was recently shown to be upregulated during obstacle stepping. An anticipatory activity of coupled cervico-thoraco-lumbar interneuronal circuits is followed by an appropriate executory activation of leg and arm muscles during task performance. This mechanism was studied in subjects with Parkinson's disease and age-matched controls walking on a ...

متن کامل

Mutability of bifunctional thigh muscle activity in pedaling due to contralateral leg force generation.

Locomotion requires uninterrupted transitions between limb extension and flexion. The role of contralateral sensorimotor signals in executing smooth transitions is little understood even though their participation is crucial to bipedal walking. However, elucidating neural interlimb coordinating mechanisms in human walking is difficult because changes to contralateral sensorimotor activity also ...

متن کامل

Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus).

We describe segment angles (trunk, thigh, shank, and foot) and joint angles (hip, knee, and ankle) for the hind limbs of bonobos walking bipedally ("bent-hip bent-knee walking," 17 sequences) and quadrupedally (33 sequences). Data were based on video recordings (50 Hz) of nine subjects in a lateral view, walking at voluntary speed. The major differences between bipedal and quadrupedal walking a...

متن کامل

Pattern generators for muscles crossing more than one joint.

The activation pattern of many hindlimb flexor and extensor motoneurons (MNs) in walking can be described as simple: a single burst of spikes in the appropriate phase of walking. However, in muscles which cross more than one joint (here called bifunctional muscles), the activation pattern is complex, consisting of activity during both the flexion and extension phases. The neural origin of the c...

متن کامل

Motor patterns and kinematics during backward walking in the pacific giant salamander: evidence for novel motor output.

Kinematic and motor patterns during forward and backward walking in the salamander Dicamptodon tenebrosus were compared to determine whether the differences seen in mammals also apply to a lower vertebrate with sprawling posture and to measure the flexibility of motor output by tetrapod central pattern generators. During treadmill locomotion, electromyograms (EMGs) were recorded from hindlimb m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 75 2  شماره 

صفحات  -

تاریخ انتشار 1996